Vibration-damping levelling elements

METRIC

BASE

DAMPING ELEMENT

NR rubber, hardness 80 Shore A, black colour, matte finish.

Steel base and stem

LEVELLING PLATE

Zinc-plated steel.

PACKING RING

NBR synthetic rubber O-Ring.

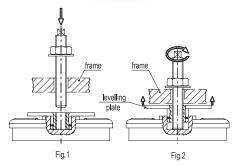
THREADED STEM

Zinc-plated steel, supplied not assembled.

NUT AND WASHER

Zinc-plated steel.

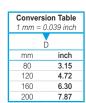
FEATURES


ELESA vibration-damping levelling elements have been designed to damp vibrations, shocks and noises produced by moving bodies or non-balanced vibrating masses of equipment and machines which can

- malfunctioning and reduction of the machine lifespan and/or of the adjacent ones;
- damage to operator's health;
- noise.

ASSEMBLY INSTRUCTIONS

- Put the base of the vibration-damping element under the machine and insert the stem through the hole (not threaded) in the frame of the machine (fig.1)
- Turn the square end of the stem to take the levelling plate in contact with the machine thus obtaining the levelling required. Then lock with nut and washer (fig.2)



A	d s	
	d ₂	
_		
		L1 min L1 max
	D ₁	

METRIC

Code	Description	D	d	D1	L	L1 min÷max	ı	l1	d2	s	Max. limit static load [N]	Stiffness [N/mm]	Max. deflection [mm]	47
415111	LW.A-80-M12x1.25x120	80	M12x1.25	72	133	35÷46	18.5	32	60	7x7	5000	2500	2	530
415121	LW.A-120-M16x1.5x130	120	M16x1.5	109	144	40÷51	23	36.5	80	9x9	10000	4000	2.5	1200
415131	LW.A-160-M20x1.5x170	160	M20x1.5	150	188	50÷63	29	43.5	130	12x12	20000	9000	2.2	2650
415141	LW.A-200-M20x1.5x170	200	M20x1.5	186	198	60÷73	36	54.5	130	12x12	40000	15000	2.7	4500

1044

TECHNICAL DATA AND GUIDELINES FOR THE CHOICE

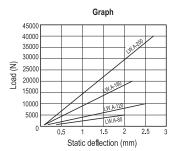
1. Basic data required:

- disturbing frequency: the frequency of the disturbing vibration produced by a on-duty machine. In general, it is obtained by the number of rotations of the engine [Hz=r.p.m./60];
- the load applied to every single vibration-damping element [N];
- the isolation degree required [%];
- the deflection value of the vibration-damping element under a given load [mm];
- the rigidity, that is to say the load that applied to the vibration-damping element produces a deflection of 1.0 mm [N/mm].
- 2. How to choose the vibration-damping element:
- with reference to the diagram for checking the isolation degree, intersect the disturbing frequency value with the isolation degree required (each isolation degree corresponds to a line in the diagram) and define the deflection [in mm];
- divide the load applied onto the vibration-damping element by the deflection value to obtain the required rigidity of the vibration-damping
- compare the rigidity obtained with the rigidity shown in the table and choose the vibration-damping element which presents the nearest value (lower) to the calculated one.

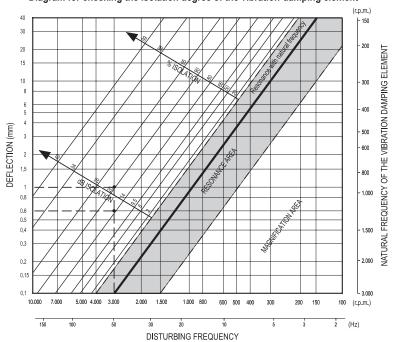
3. Check:

- the deflection of the vibration-damping element chosen can be obtained in the graph on the basis of the load;
- intersect the disturbing frequency value with the vibration-damping element deflection value in the diagram to obtain the isolation degree offered by the vibration-damping element chosen;
- compare the obtained value with the isolation degree required.

4. Example:


Conditions of use: disturbing frequency = 50 Hz (3,000 r.p.m.); load applied to every levelling element = 4,000 N; a 80% isolation degree is required:

- diagram shows that with a 50 Hz disturbing frequency and an isolation degree of 80%, the deflection obtained is 0.6 mm;
- divide the load applied by the deflection obtained to define the rigidity required, which is 4,000/0.6= 6,666 N/mm;
- compare the rigidity value obtained (6,666 N/mm) with the values reported in the table. This value is within the rigidity value reported in the table for LW.A-120 (4,000 N/mm) and LW.A-160 (9,000 N/mm). Choose the vibration-damping element with the lower value that is LW.A-120.


For a further check:

- graph shows that LW.A-120 (4,000 N/mm) deflection is 1mm.
- by intersecting the deflection value with the disturbing frequency of 50 Hz in the diagram, the isolation degree obtained is 90%.

This value is even greater than the required one; your choice has proved to be correct.

Diagram for checking the isolation degree of the vibration-damping element

1045